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- Dark energy 
component 
generated 
by a base 
set of oper-
ations: (e.g. 
Add, Mul, 
Sin, Inv).

-  Simplify symbolic expression (Sympy simplification, Permutation check, reparametrization of con-
stants)

-  Check for duplicate equation.
- Calculate first and second derivatives.
- For different values of the free parameters (e.g. close to zero, close to unity, large value):

• Check for complex values.
• Check if values of equation of state over scale factor are restricted in the desired range.
• Check if values of adiabic sound speed over scale factor are restricted in the desired range.

Output:
- Viable candidate for 

dark energy density 
equation, first and 
second derivative.

-  Select the best value for 
the free parameters.

-  CLASS modification: 
•  Convert equations for CLASS notation
•  Modify background module (implement new fluid component by writing ρ(a), ρ’(a), ρ’’(a). From these equa-

tions, the equation of state and adiabatic speed of sound are calculated).
• Modify input module (replace Cosmological constant and calculate the ΩDT value today).
•  Compile new version of CLASS.
•  Check compilation and the DE model using single test run with free parameters values of pre-testing.

-  MontePython MCMC chain:
• Write new parameter file setting the new parameters of the model, the standard cosmological parameters 

and the likelihoods to be used. 
•  Run small MCMC chain for evaluating the DE candidate.

Output:
- best χ2 

value as fit-
ness value 
for the GP 
evolutionary 
method.

-  Candidates with high fitness value 
are selected.

-  Apply evolutionary strategy for se-
lected population (Mate and Mutate).

Output:
- Next Generation of candidates.

Population:
-Size of Initial population: 2048

• Generated by a base set of operations: 
Add, Sub,Mul, Pow, safe_Div, safe_-
Inv, Exp, Ln, Neg.

• Parameters: ΩDT, D.
- Number of generations: 8
- Number of selected candiates by gener-

ation (mu): 128
- Number of generated candidates for 

next generation (lambda): 512
- Mate probability: 0.5
- Mutate probability: 0.5

Pre-testing:
-  Values of D for testing: 

(0.05, 0.95, 1000).
- EoS accepted range: 

(-1.5, 0).

Evaluate function:
-  CLASS modification: 

•  DE candidate replacing Cosmological constant:                           
H2(a) = H0

2(Ωma-3 + Ωra-4 + ΩDT(a))
•  DE component is considered homogeneous.

-  MontePython MCMC chain:
• We use the combined likelihoods: CMB Planck 2018 data: 

Planck_high_l_TTTEEE_lite + Planck_low_l_EE + 
Planck_low_l_TT + H0 prior (SH0ES value) + S8 prior 
(DES value).

• Free parameters: h, D, ωcdm. 
• Fixed parameters: bestfit value of Planck 2018 for ΛCDM.
•  MCMC chain with 1200 steps.

Selected Population and Ouput:
-  The method used was the (mu + 

lambda)-ES: A version of evolution 
strategy where children and parents  
together will define the population 
for the next iteration.

Top 5 models:

 - Model 1: 
  ΩDT(a) = ΩDT,0 / (D a - ln(D a))

- Model 2: 
ΩDT(a) = ΩDT,0 / (D aa - a)

- Model 3: 
ΩDT(a)  = ΩDT,0 / (D3 a3 - ln(a))

- Model 4: 
ΩDT(a)  = ΩDT,0 / (D a(a  ) - a)

- Model 5: 
ΩDT(a)  = ΩDT,0 / (D3 a(a + 2) - ln(a))

Analysis of the CosmoGen (CG) model: We select model 1 as the "CG model" to further explore. We computed its structure formation properties  
and tested them against data, verifying if the model actually has an impact on the H0 and S8 tensions as requested to CosmoGen.

We performed a Nested Sampling analysis using PolyChords with the following free parameters: (parameter_D,  h, ωb, ωcdm, As, ns). All other parame-
ters were fixed with the Planck 2018 results for ΛCDM. We tested the model against two observables:
- CMB Planck 2018 data: Planck_high_l_TTTEEE_lite + Planck_low_l_EE + Planck_low_l_TT .
- Weak lensing (WL) KiDS+VIKING-450 data.

The exact same analysis was made for the ΛCDM model for the sake of model comparison.

Table 1: Mean and 68% uncertainty estimates of the 6 basis param-
eters and 3 derived parameters for the CG model and ΛCDM 
models by the 2 data sets. The Bayes factor used for model compar-
ison BCG,Λ = Z(CG Model)/Z(ΛCDM) is also shown.

CG model

WL (green)
CMB (golden)

Output:
- Symbolic expressions 

for the evolution of the 
dark energy compo-
nent, with parameters 
ΩDT and additional free 
parameters.

-  All individuals that passed the 
CLASS test, from all generations, are 
stored to form the final list of models. 

Initial Population Pre-testing

Evaluate function

Next Population

Final Population

ΛCDM model

WL (green)
CMB (golden)

CMB

CG model (green)
ΛCDM model (golden)

WL

CG model (green)
ΛCDM model (golden)

CosmoGen in a nutshell

Output: List of models sorted by fit-
ness value.
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CosmoGen: A Genetic Algorithm Framework for Exploration of 
Dark Energy Dynamics

Ask CosmoGen to generate cosmological models that can alleviate the S8 and H0 tensions (and restricted to the case of unperturbed dark energy fluids). To this goal we set-up the follow-
ing conditions, where a crucial aspect is to set the likelihood used in the procedure to the one of CMB (Planck 2018) multiplied by a H0 prior (SH0ES) and a S8 prior (DES)

Case Study

Results 

Abstract
We introduce CosmoGen, a computational framework developed in Python, that implements genetic programing (GP) and genetic algorithms (GA) from the Distributed Evolutionary Algo-
rithm for Search and Optimization (DEAP) library, to generate and evaluate candidate cosmological models with varying dark energy components. The framework integrates the Boltzmann 
code CLASS and Bayesian inference (MontePython) to evaluate the physical validity of the candidates. We present a case study addressing cosmological tensions. Our approach provides 
a new method to explore the vast space of potential dark energy models and identify viable candidates based on their dynamical properties. 

Conclusions: The model generated by CG tries indeed to solve the H0 and 
S8 tensions. 
Figs.1 and 2 show a better agreement between the CMB and WL con-
straints of the CG model in comparison to the constraints of the ΛCDM 
model. Fig.4 shows this is caused by the CG model allowing higher values 
of S8 for lower values of Ωm (as shown in the S8-Ωm contour). In Fig.3 we 
see a shift in the H0 distribution towards higher values. This behaviour 
allows for a better agreement with H0 estimates from background observa-
tions.


